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ABSTRACT max maximum value
min minimum value
The paper describes a new technique for convert-
ing a constrained optimization problem to an INTRODUCT ION

unconstrained one, and a new method for mult{-
objective optimization based on that technique.
The technique transforms the objective functions
into goal constraints. The goal constraints are
appended to the set of behavior constraints and
the envelope of all functions in the set is
searched for an unconstrained minimum. The
technique may be categorized as a SUMT algor-
ithm. In multi-objective applications, the
approach has the advantage of locating a com-
promise minimum without the need to optimize for
each individual objective function separately.
The constrained to unconstrained conversion is
described, followed by a description of the
multiobjective problem. Two example problems
are presented to demonstrate the robustness of
the method.

NOMENCLATURE
A cross sectional area
Ei Youngs Modulus of member i
Fx k-th objective function
Fe iron
F global criterion or compromise objec-
tive function
F* reduced objective function or goal
constraint
fj set of functions
93 problem constraints
NCON + NOBJ
K-S Krefsselmeier-Steinhauser function
NCON number of constraints
NOBJ number of objective functions
Ti titanium
X vector of design variables
P K-S coefficient
Superscripts
cm constrained minimum
0 initial design point
3 scaled value
Subscripts
i ith element
J jth element
k kth element
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The paper has two purposes: to bring to the
optimization practitioners' attention a new
technique’ for converting a constrained optimiz-
ation problem to an unconstrained one, and to
present a new method for multiobjective optimiz-
ation based on that technique.

The conversion techniquel may be categorized as
a "Sequential Unconstraiped Minimization Techni-
que” (SUMT) class method” but it does not
require the use of a draw-down factor, unlike
the classical procedure. Also, the unconstrain-
ed function it uses to represent the constrained
problem at hand is defined over both the feas-
ible and infeasible domaigs, similar to an
extended penalty function™.

Difficulty in defining a single objective func-
tion in many engineering design problems is a
motivation for continuing interest in develop-
ment of techniques for multiobjective optimiza-
tion applications. Many of the multiobjective
optimization methods require either a conversion
to a single objective function by means of a
composite function with judgmental "weight fac-
tors", or separate optimizations for each objec-
tive followed by an additional "global® gptimiz-
ation to arrive at a suitable compromise . The
technique introduced in this paper, for the con-
strained-to-unconstrained optimization problem
conversion, is also shown to have an intrinsic
applicability to multiobjective optimization.
Its primary benefit in that application is the
elimination of the potentially expensive sepa-
rate optimizations for each objective.

CONSTRAINED-TO-UNCONSTRAINED CONVERSION

The conversion technique replaces the constraint
boundary surfaces and the objective function
surface in n-dimensional design space with a
single envelope surface constructed using the
Kreisselmefer-Stefnhauser (K-S) function® first
introduced for optimization of control systems.
That function has subsequently been established
in structural optimization as a means to replace
many cogstra1nts with a single cumulative con-
straint’ . The function s a differentiable
envelope of a set of functions fJ(X) and it

has this form:

K-S = fpax *
1 o (f3-fmax)

= L°g [ze ]) J'l....,d (1)
e J



and a property such that

Logld) ¢ s (2)

foax *

where p controls the distance of the X-S enve-
Tope surface from the fg,, surface. The K-§
function may be regarded as analogous to the MAX
function available in many high-order program-
wming languages but, unlike the MAX function, it
{s differentiable (value- and slope-continuous);
therefore, it may be called upon by a gradient-
guided optimization algorithm to search for a
minimum of the envelope of a set of functions.

The constrained optimization problem to be
solved with the aid of the K-S function is, in
conventional formulation:

minimize Fi(X), & =1 to NOBJ; (3)
such that
94(X) <0, {1 =1 to NCON;

where constraint functions gy are written in
terms of the computable functions, termed DEMAND
(X) and CAPACITY (X), that provide the measures,
respectively, of what the design is asked to
carry versus what it can sustain:

gi(X) = DEMAND(X)/CAPACITY(X) -1 (4)

] ]

For introductory purposes, Fy(X) 1n equation 3
is a single objective (i.e., NOBJ = 1); exten-
sfon to many objectives will follow later. To
formulate the K-S functfon as an envelope of the
objective functions and constraints, one has to
normalize the objective function in order to
make it comparable to the normalized constraint
functions. The normalized objective and con-
straint functions form a set of functions whose
envelope is approximated by the K-S function.
An unconstrafned minimum (except for the usual
side constraints) of the K-S envelope may be
found by any suitable search algorithm.

The procedure formu?atedl 1s 1llustrated in
figures 1 and 2. For graphic simplicity, one
design variable is shown. To make this paper
self-contained the procedure is restated here in
descriptive terms keyed to figures 1 and 2.

A single design variable x is measured on the
horizontal axis. The objective function F and
contraint functtfons g1 and g2 are represented on
the vertical axis. The inftial design point is
at x = x° where the constraints are violated and
the objective has the value F°, By inspection,
the constrained minimum lies at xtM, The
requirement is to locate that minimum starting
from x°.

Referring to figure 1, the objective function in
its original form before normalization {s
labeled F. F {s normalized by dividing F by

F®. The scaled Fg = r/lr*'l is then shifted to
intersect the abscissa by Subtracting unity and

further offset by subtracting gpax. The
shifting and offsetting is expressed as follows:

F* = (Fg - 1) - omax (5)

which moves the objective function to F* in
figure 1. The normaljized, shifted, and offset
objective functfon, F~ will be referred to as
a reduced objective function. The reduced
objective function is included with the con-
straint functfons to form a set of functions
fj(x) whose envelope {s approximated by the
K-S function shown by the dashed line.

An unconstrained minimum of that K-S function is
found at x by means of any search method suit-
able for unconstrained optimization. Locating
that minimum completes one cycle of the proce-
dure. The procedure cycle count should not be
confused with the count of the iterations carri-
ed out by the unconstrained minimum search algo-
rithm; many of the latter iterations may be
needed in one of the former.

Referr{ng to figure 2, the next cycle starts
with x and F' . Equation 5 is used to compute a
new F* using F' . This formulation takes into
account that gpmax May be a negative value.

The K-S function is fitted to the set (gl,gz.F;)
using equation 1 and its minimum is found at x".
This completes cycle 2 of the optimization pro-
cedure. Successive cycles are continued until
convergence.

It is apparent, from the above two cycles, that
the unconstrain;d miniya progress from the
initial x° to x , to x°, approaching the con-
strained minimum at x¢™, One may also observe
that in contrast to cycle 1, cycle 2 starts from
a feasible design. This 11lustrates the capa-
bility of proceeding either from an infeasible
or a feasible initfal design point. Finally, it
should be noted that the process of shifting and
offsetting changes the position of the normaliz-
ed objective but perserves its sltope for each
cycle.

At the inftial location x°, the K-S function
reflects almost exclusively the geometrical pro-
perties of the constraint boundary g1. In con-
trast, the objective function dominates the K-S
envelope function in the search for a minimum in
the case of a feasible design. Consequently, if
a design point in the midst of the i-th cycle is
infeasible, the search direction toward a small-
er K-S envelope will point toward smaller values
of the dominant constraint, thus reducing the
amount of constraint violation at the possible
expense of increasing the objective function.

On the other hand, 1f that design is feasible,
the search direction toward reduced K-S values
will be equivalent to moving toward lesser
valyes of the objective at the possible expense
of increasing the values of the satisfied domi-
nant constraints.

The process converges to the state shown in
figure 3 when it is no longer possible to reduce
the objective function without violating the
constraints. At the constrained minimum point
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the formula of equation 5 produces no offset
because gT,, = 0. The constrained minimum 1is
properly located at the boundary surface of the
maximal constraint. Generalized to n-dimension-
al space with m constraints, the unconstrained
minimum of the K-S envelope constructed as above
approximates the location of a constrained mini-
mum defined by a full vertex of the design
space, or by a point of tangency between the
objective function and the dominant constraint,
or a mixture of these two extreme conditfons.

MULTIOBJECTIVE OPTIMIZATION

The same procedure described above, applied in
this case, will establish a sequence of K-S
envelope minima with each K-S envelope function
containing all of the reduced objective func-
tions. Since all normalized objective functions
intersect at the same point located at x°, their
values in the interval x > x° into which the
search will be progressing will rank according
to the magnitudes of the corresponding slopes
(for a convex problem). The sequence leads to a
constrained minimum point, where the configura-
tion of constraint boundaries and reduced objec-
tive functions are {llustrated in figure 4. The
configuration is identical to that shown in fig-
ure 3 except for the presence of several objec-
tive functions, all of which intersect at the
constrained minimum point after scaling and off-
setting. The constrained multiobjective minimum
point, i1lustrated in figure 4, has the property
ithat one can not depart from it without either
violating the constraint(s) or increasing at
least one of the objective functions - the clas-
sical definition of a pareto-optimum. It {s
pointed out in the appendix how the method
:elates to the goal programming class of algor-
thms. .

NUMERICAL EXAMPLES

The method was tested using a three-bar truss
design pryblem. figure 5, which is a classical
test case . The truss is considered symmetric,
thus Ay = A3 and E; = E3. This problem consi-
ders two distinct load cases Py and P;. The
problem {is generalized by including the angle a
with the cross-sectional areas A, A2 as a third
design variable. In addition, two materials are
used. A, and A3 are made of the same materfal
and Ay 1s constructed of a different material,
The goal of the optimization 1s to minimize
combinations of weight, cost and support area
width D in figure 5. Steel, with a greater
Youngs Modulus and inexpensive, and titanium,
with 2 greater stress allowable, a Tower Youngs
Modulus, and much more expensive were selected
as the two materials to provide for a meaningful
trade-off between the objectives of weight and
cost. Introduction of the angle a brings in the
dimension D, a function of a, as a consideration
in design; reduction of D increases the forces
in the members and also reduces the length of
the outer members, such that a complex coupling
of the geometry, weight, cost, and strength is
created. The truss analysis is given in the

Appendix and the material properties, including
costs, are stated in table 1.

Verification of the method with one mater{al
common to all the members, the objective of min-
imum weight, the angle c¢ fixed at 45 degrees,
and the two cross-sectfonal areas Ay and A as
the only two design variables, yielded re;ults
which agreed with the classfcal test case .
Subsequently, a number of optimization experi-
ments were carried out with various combinations
of material configurations, chofce of design
variables, and selection of objectives. In all
cases the search for the minimum of the K-S
function envelope was carried out by the
Davidon-Fletcher-Powell algorithm .

Table 2A displays a 1ist of cases, showing for
each case the objectfve function(s), material(s)
used for the truss members and design vari-
able(s). For example, case 9 in table 2A uses
weight and the dimension D as objective func-
tions; steel for the outboard members; titanium
for the center member; and A;, Az, and a as
design variables. Initial conditions of A, A,
and o for all cases of table 2A are given in
parenthesis, table 2B.

The results in table 2B, corresponding to the
cases of table 2A, show consistently the
method's abflity to generate optima for single
and several objectives for the example problem.
It 1s fnstructive to observe that when an opti-
mization is executed with a single objective,
for example, the weight, and then repeated with
additional objectives, the latter are signifi-
cantly reduced at the price of a relatively
small increase of the former - see for instance
the cases 10, 12, and 16 for (Ty{/Fo/T4)

and cases 9, 11, and 13 for (Fo/Ty Fei.

These cases are also {llustrated graphically in
figures 6 and 7.

Cases 15 and 18 in table 2B include results
obtained by the global criterfion formulation .
That method solves a multiobjective optimization
problem by first executing separate optimiza-
tions for each of the objectives Fy to obtain
a set of feasible minimum solutions Fy . .
Next, a search is carried out for a cofi:" _
strained minimum of a compromise objective F(X)
where
x) - F . 7°

- Ngsa K77 kmin
F(X) = F

k=l kmin (6)

such that
g¢{X) <0, 1 =1 to NCON;

Comparison with cases 19 and 20 respectively
shows a good match between the method reported
herein and the global method, figure 7.

Additional test cases, not included in the
above, were carried out starting the optimiza-
tion procedure from a variety of {nitially feas-
ible and infeasible points. Convergence to the
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same optimal design was observed, regardless of
the initial point, except for cases which
clearly indicated existence of local minima.

One should note that by adjusting the
coefficient » in equatfon 1 toward smaller
values, one can keep the K-S function from
*dipping” into {nfertor local minima, thus
maintaining the search advance toward the global
minimum. ’A method for controlling p has been
suggested” . Typically p may be held constant
after a proper value is determined. It should
be noted that the coefficient p affords the user
a degree of control over the procedure. On the
other hand, problem dependent sensitivity of the
procedure to that coefficient may be a drawback
which forces experimentation to find a range of
p values for the case at hand.

The second example {s an optimization of an
electric power transmission 1ine shown in figure
8. The nomenclature for this problem is 1isted
in the appendix. The 11ne {is assumed to extend
over a fixed distance D, over a flat terrain.

It comprises equidistant towers, separated by a
distance L, assumed to be thin-walled cylindri-
cal columns of radius R, with a constant wall
thickness t. A1l towers are geometrically iden-
tical and made of steel. Differences between
the weight and cost of the real towers and their
fdealization as cylindrical columns are repre-
sented by shape factors. The towers support
three parallel electric cables made of an alumi-
num alloy. The cable wefight and the weight of
{ce accumulated on the cables are the combined
foads q, which put the cables in tension and the
towers in compression. The cables are assumed
to be infinitely rigid in tensfon so that they
form a catenary curve between the towers. The
catenary sag is assumed small relative to the
cable length so that a parabolic approximation
to the catenary equation 1s used. Constraints
are placed on the stresses in the towers due to
yielding, cylinder wall buckling, and column
buckling. Column bending is also considered for
the case of failure of all cables at a point in
the 1ine. Tensile stress constraints are impos-
ed for the electric cables, and the cable-to-
ground clearance is constrained. Side con-
straints are imposed on the cable cross-section-
al areas A, the tower geometry, and the distance
between towers L. Another side constraint is
prescribed for a minimal cable cross sectional
area R as required for electric power transmis-
sion. Problem design variables are the distance
between towers L, tower height H, column radius
R, wall thickness t, cable cross-sectional area
A, and cable tension, P. The problem objectives
are the total weight of steel and aluminum W,
the total cost, and the tower height. The cost
objective entails the cost of: steel, aluminum,
and tower foundations. The height objective is
included to reflect environmental specifica-
tions, a typical unquantifiable consideration
engineers are being confronted with increasingly
often.

This case is rich in complex interaction among
the desfgn variables. For example, the required
cable-to-ground clearance may be attained by at
least three different means. Increasing the

tower height, cable tension, or decreasing the
tower-to-tower distance. However, each of these
means has a different influence on each of the
objective functions and constraints.

Detafls of the example analysis are provided in
the Appendix. Table 3A displays a list of cases
for this example. Optimization results for com-
binations of the objective functions are given
in table 38. Initfal conditions of design vari-
ables for all cases are given in parenthesis,
table 3B. Figure 9 displays results of several
cases of discussion graphically. The results,
again, show that the method has the ability to
locate compromise designs satisfying all the
constraints. The optimization for cost only
(case 2) reduces the cost by 28% of the cost of
the minimum weight design, case 1, while increa-
sing the weight by only 9%. In contrast, the
reduction of the tower height objective is much
more expensive in terms of the weight and cost
(because the cable tension tends to infinity as
the tower height approaches the required cable
ground clearance). Thus, the inclusfon of the
tower height as another objective, along with
weight and cost, results in the cost, case 6,
nearly 12 times greater and weight nearly 3
times greater than the weight and cost of the
minimum cost only design, case 2. In the latter
case, the towers are widely separated and made
tall which reduces the cost of the tower founda-
tions. On the other hand, the cost and weight
of the compromise design, case 6, are 7% and 50%
lower than those of the design for minimum
hefght alone, case 3.

CONCLUDING REMARKS

A new techniquel for converting a constrained
minima prohlem to an unconstrained one was
demonstrated to be a useful tool in single
objective and multfobjective applications. The
technique transforms the objective functions
into goal constraints, the goal value for each
objective is an adjustable quantity. The objec-
tive goal constraints are then appended to the
set of behavior constraints and the envelope
(cumulative constraint) to al) the functions in
the set is constructed using the Krefsselmefer-
Steinhauser function, whose minimum is searched
for by any unconstratned minimizat;gn algorithm
(the Davidon-Fletcher-Powell method” was used in
the reported study). Search toward the minimum
of the envelope function advances the design
toward the compromise constrained minimum. That
minimum {s reached in an iterative procedure,
which updates a set of behavior and objective
goal constraints and their envelope function at
the outset of each {terative cycle. By repre-
senting the objective function(s) as objective
goal constraints, the method is related to the
goal programming approach , and the constrained
minimum it attains conforms to the classical
pareto-optimum definition.

The method typically converged after 8 to 50
cycles, depending on the mix of design varfi-
ables, parameters and-objective functions.
The technique was demonstrated on variable
geometry and cross-sectfon trusses built of
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different mterials contributing a wide range of
mechanical properties and cost to the design
objectives. Objectives also included the amount
of space occupied by the truss on its support
surface. An example of an electric power
transmission 11ne was also optimized for a
compromise of ehjectives. The objectives were
materfal volume, Cost, and support tower height.

The method results compared well with those
obtafned by a goal programming algorithm and the
method performance was satisfactory in all of
the single and multiobjective test problems. In
contrast to other multiobjective optimization
procedures, the method showed an ability to
locate compromise optimum designs without the
expense of having to optimize individual
objectives.
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APPENDIX
Step-by-Step Optimization Procedure

1. Set iteration counter K=0; Inft{alfze x =
x®;

2. Execute analysis of the problem to
obtain Fy and g;'s;

3. Define a reduced objective function per
equation 5;

4, Define an envelope function K-S(F*,gJ) per
equation 1;

5. Find coordinates X of the
unconstrained (exc@&? for side constraints)
minimum of the K-S function by any
suitableunconstrained optimization
algorithm.

6. Reset K = K + 1, and reset xy = x , ;
7. Repeat from #2 until convergence criteria {s
satisfied.

A computatfonal cost saving option in step 5 is
to execute only a 1imited number of steps toward
the K-S minimum instead of a full fledged func-
tion minimization. Under that option, one may
begin with a single step and progressively
increase the number of steps as the procedure
advances. In the case of many objecwive func-
tions step 3 is carried out for all of thep, and
the entire set of the reduced objectives F

are included as arguments in the K-S function in
step 4. i

Analysis of the Truss Example

Referring to figure 5, the truss s analyzed as
a system with two elastic degrees of freedom.
Utilizing the stiffness method the following
load/deflection equations are obtained:

fea ]
[T

Due to symmetry K12 = K21.

1 "{Rxl:lﬂzl; Al
@ |

Where:

K = cosza(kg +k);
K12 = -cosa k3 sina + cosa k1 sina; A2

sinza(ka + k1) + ko

K22

and:

DET = Kiikpz - K,;



The member siiffness are given as,
kg = EjAj/tg,  § = 1,...3
where:

L1 = h/sim

L2 = h
13 = 4

For load case P:

-P1 cosB
Ry =

Py sinB

For Toad case Pz:

P2 sinB'

Pz cosB
Ry =

The solution of equation Al for load case P
yields:

u = DET-} ((-P cosa)kaz - (P1 sina)kiz);
u = DET“((Px sina)kir - {-P cosa)ki2);
and for load case P2 ylelds:
Y1 DET"((Pz cosa)k2z - (P2 sinalkiz);
uz = DET‘I((Pz sina)kil - (P2 cosa)kiz2); A3
From the displacements A3 and Young's moduli
Ey for each member the stresses are recovered
as follows:

o1 = ((uz cosa + uz sina) / £1)E1;
oz = (u2/%2)E2;
oy = {(-uy cosa + uz sina) / £3)E3; A4

Analysis of the Electric Power Transmission Line

Example

Refering to figure 8, the material used for the
cables is 2024 aluminum alloy. The materfal
used for the towers is AISI carbon steel. The
following is the nomenclature used in the analy-
sis. The actual data are noted in parentheses,
including minimum (Jower bounds) values where
appropriate.

R - tower mean cylindrical cross-section radius
(mintmum 5.0 1n.);
L - fowgr-to-tower distance (minimum 300.0
ﬂ.;
t - tower wall thickness (mintmum 0.125 in.);
by - ratio of R/t (minimum 50);
b2 - ratio of L/H (minimum 4);

H - tower height;

D - total distance covered by the transmission
line (60.0 mi.);

1 - true length of the cable between towers;

A - cable cross-section area (minimum 0.20
in);

P - cable tension;

f - sag of the catenary between towers;

E - Yggng‘s modulus for steel (towers) (3.0 x

1

pst.);
Y - specif;c weight of aluminum (0,100
1b/in.%); s
Y2 - specific weight of steel (0.284 1b./in.”);
Y3 ~ specific weight of fce (0.033 1b/in.”);
m - shape factor for tower weight (0.75);
m - shape factor for tower cost (1.0);
n - number of parallel cables; (3);
so - safety factor for cables (1.5);
sy - safety factor for combined bending-

compressfon stress in the tower (1.25);
s2 - safety factor for cable stress (1.50);
s3 - safety factor for compressive stress in
tower (2.00);
sy - buckling factor (0.60);
q - load on the cable including cable weight and
jce accumulation;
c1 - cost of the cable material per unit weight
(0.40 $/1b.); .
¢ - cost of the tower material per unit weight
(0.09 $/1b.);
c3 - cost of the foundation per tower
($50,000.00); .
kyol - ratio of the volume of ice to the
volume of the cable (3);
- allowable stress for the cable (44 ksi);
- allowable stress for the tower {36 ksi);
h - cable-to-ground clearance (H-f);
- required cable-to-ground clearance (32.8

ft.);

The strength of materials equations for the
problem are:

Weight on the unit length of the cable including
ice

g =v2A(1.0 + k _ (va/v2)) AS
vOl

Sag of the cable and its true length (assuming
inextensional cable)
f=ql2/(8°P) A6
1= 1{1.0 + 2.67(f2/L)) A7

Stress in the cable
o =35 P/A A8
c
Stress in the tower due to combined compression
and bending; the worst case of the latter occurs

when the cables break on one side of the tower

o = (nPH/XREL) + (nP(4F/L)) A9
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Critical stress for cylindrical wall buckling
(conservatively using a formula for uniform
compression although the tower §s in the state
of combined compression and bending)

] ng38PnfN Al0
comp
Critical force of the tower buckling in the
column mode
Fo =R/ (4 W) All
crit
The total material weight of the towers and
cables (neglecting the last tower)
Wy = (ALny; + m 2¢RtHy2 )(D/L) Al2
The total cost of the transmission 1ine and
towers including the foundation costs

Cost = ((c1Atvin(1.0 + 2.67(F2 /L) )) +

(me 2vcaRtHy2) + c3)(D/L) A13

The objectives of the problem are contributed by
eq. Al2, Al13, and the tower height H. The con-
straints are:
cable to ground clearance
t v h>hp Al4
strength of the tower

gy < g2 /s1 A15

buckling of the tower in the cylindrical wall
and column modes, respectively

Scomp < ccﬁbRt/sz Al6
where: o ., = swE(t/R)/s2
Ocomp < FeriT/S3 Al7

strength of the cable

dge £ 01 /so Al8
Ratio of R/t

R/t > b1 A19
Ratio of L/H

L/H 2 b2 A20
The design varfables are A, R, t, H, L and P.

The Method's Relationship to Goal Programming

It can be shown that the method described
in the report relates to the methods of the goal
programming category. Indeed, by including
coefficients 8 and n in equation 5

Fx A21
F’k'(—;—— "‘k)'qu
|F k|2

where: F° are previously computed feasable
solutions, it becomes possible to assign prior-
{ties to the objective functions by controlling
the shifted distance and slopes (1.e., the
relative magnitudes of the normalized objectives
away from their intersection point}. One may
observe that at the multiobjective constrained
minimum point we have

Fy
e -nyg = 0 A22
[F%] e

for all the objective functions Fy. By defi-
nition of Fy, the expression in parentheses
may be regarded as a constraint imposed on the
objective F'y. If the value F . {s

for lFokI

known, one could replace F% .

8y and 1 for ny in equation A22 and, thus,
formulate the optimization problem as follows.

Find X such that

Fi/Fipin = 1 £ 05 k = 1,...N0BY 23

94 _<_o' i= l,...NCON:

This formulation states a solutfon to a set of
inequalities, expressing the intent to modify
the design to a state in which all the behavior-
al constraints are satisfied and all objectives
are maintained below or at their target

kain' Thus the procedure may also be

categorized as a goal programming approach.
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Table 1. Material Proper."?i;s and Costs

Preperty

MTERIAL

Specitic might (1ba/in?)

Cost ($/10m)

A)loushle stress-tension (kst)
stress-compression (ksi)

Toung's madulus (pst)

STERL (Fe) TITANIUR (T¢)
0.2 0.160
0.0 .00

» 10
) 2.8
0 x 108 15.5 x 104

Table 2A. Cases for Three-Bar Truss Problem

Table 2B. Results for Three~Bar Truss Problem

oxse nﬁ;gag, TERIALS) m"ﬁu'f:(s) CASE I\:mn (m] cosT ($) | A, (1n2) [ Ay (107) [ o (deg)
Inftial Conditions of ODesign Variables (1.0} (1.0} {45.0)
1 Weight Fe/Fe/Fe [ 1 48 n 0.481 0.2341 45,00
? uefght Fe/Ti/Fe [} H 4.20 17.86 0.450 0.402 45,00
3 eight T/Fe/T A 3 0.805 14.05 0.123 0.088 45,00
4 Cost Fe/Ti/Fe A ‘ 4.5 2.% 0.563 0.013 45.00
5 Vetght/Cost. Fe/Ti/Fe A H .8 2.65 p.548 0.011 45.00
s Cost TH/Fe/TH A 6 1.09 12.21 .108 211 45.00
? Veight/Cost T/Fe/T A 7 0.93 12.04 .106 201 45,00
[] Wnight/D Fe/Fe/Fe Na (] 6.091 2.50 1.003 0.029 5.64
] Weight/D Fe/Ti/Fe Ae [} 6.3%2 $.23 1.014 0.067 6.8
10 Wtght/0 T/Fe/TH Ne 10 3.8 63.20 0.779 0.452 84,02
ARy W/Cost/D Fe/T4/Fe As 11 4,881 8.640 0.7¢7 0.169 69.67
12 W/Cost/D T/Fe/T e 12 1.153 14.69 0.187 0.204 60.15
13 Veight Fe/Ti/Fe Na 13 4,117 10.20 0.836 0.2161 53,3
] Cost Fe/Ti/Fe Ae 14 4213 2.19 0.633 0.012 $8.27
18 Soo? Fe/Ti/Fe Ne 15 4148 2.2 0.602 0.011 882
16 Mn‘t TH/Fe/TH Ne 1% 0.064 17.08 0.199 0.054 63,68
1] ‘cost TH/Fe/T4 Me 17 1.092 12.20 0.108 0.218  #4.43
18 (Al ™/Fe/T As 18 1.342 12.20 0.103 0.236 Qe
19 tatfght/Cost Fe/Ti/Fe Na 19 4.006 2.08 0.592 0.010 86.75
2 Veight/Cost TH/Fe/M Nea 20 0.984 12.42 0.102 0.17¢ 2.0t
Table 3A. Cases for Transmission e
Tower and Cables Table 3B. Results for Transmission Tower and Cables
oase no:‘-)ﬁav: DESIGN mrn (iom.}] Cost [ e fugn) FL(m) Jatnt)]re)] ¢t (ta)
(5} VARIABLE(S) CASE 107) (x10%)
Initial Conditions of Dasign Variables (15.00) (310.00) (2500.0)  (0.60) (3500.00) (0.40)
! et RIWLINI 1 0.10491 0.34687 27.05 448.2¢  $824.00 0.3 6141.00 0.13
2 Cost R/W/LINPR
3 [] RIW/LINPY ? 0.20176 0.098592  29.81 1019.00  21000.00 0.28 $030.50 0.22
N teigt/Cost WWLINIE 3 1.0686 1.2134 20.92  397.26  1589.00 0.3 7827.%0 0.3
) eight/®t RIMLIND /Y
[] Wight/Cost/N RINLINPIY [ 0.37654 0.75959 1712 435,00 2655.50 0.5 4ar1.s0 0.21
. $ 0.42284 1.1982 21.67  411.00 1678.00 084  QX%.%0 c.13
[ 0.53838 1.1062 14,3 402,20  169%6.50  0.2% 4281.00 0.2
. ORIGINAL PAGE 1§
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Figure 1. Constrained to Unconstrained
Conversion, Infeasable Initial Design x

F 9 K-S envelope

q 27

Figure 2. Constrained to Unconstraine
Conversion, Feasable Initial Design x

b F 9 K-S envelope

Pigu;e 3. Constrained to Unconstrained
Conversion, Constrained Minimum x m

e ' Pigure 4..COnstriined to Unconstrained

Conversion with Multiple Objectives
at Constrained Minimum

] 20 40 [ [ 1]
Pigure 6. Weight/Cost Comparison,

Three Bar Truss

171

[ 10 20
Figure 7. Weight/Cost Comparison,
Three Bar Truss

e
|

Figure 9. Weight/Cost Comparison,
Transmission Tower with Cables
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